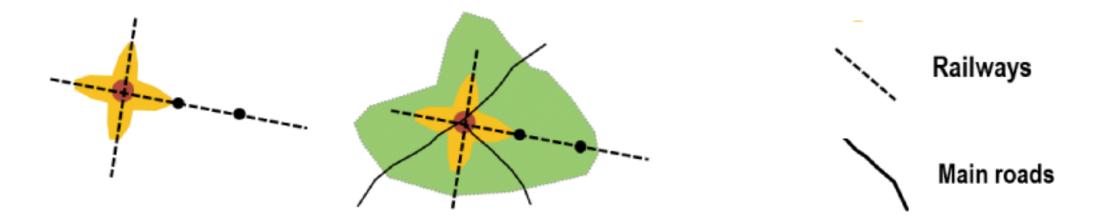


Avenues, rail transit and the denseness of São Paulo's urban development

Adriano Borges Costa Christopher Zegras Siqi Zheng

CRE Summer Seminar Series August 27th



- Causal inference on how investments in road transportation infrastructure and rail transit impacted the vertical and horizontal urban development of the city of São Paulo (Brazil)
 - Construction of avenues crossing the urbanized area to connect suburban and peripheral neighborhoods generated urban expansion
 - Investments in rail transit promoted vertical neighborhoods with a higher building density.
- Idiosyncrasies of São Paulo's transportation development offered us the opportunity to use urban river courses and abandoned streetcars lines to instrument for the arterial road and transit network expansion

- The paper innovates in three aspects:
 - develop an innovative historical instrumental variable using urban river courses and abandoned streetcars lines
 - differentiate the impacts of urban roads and rail transit
 - differentiate vertical or horizontal urban development.
- Contributes to the literature on the interaction between transportation and land use
 - Nathaniel Baum-Snow's papers in the North-American and Chinese context are the most closely
 related analysis, as they investigate the impact of transport infrastructure from an intra-city perspective.
 - Evidence on highways promoting suburbanization
 - This paper is the first to investigate how urban road transportation and rail transit constructions differently contribute to horizontal and vertical urban expansion with a research design identifying causal effects

FRAMEWORK

- Mass transit is more dependent on density and ridership demand
- Transit accessibility: concentrated and intense (around the stations) and decreases quickly with distance as it does not reach the last mile
- Roads accessibility: dispersed and less intense gains, not limited to the bordering areas of the access points, as it does not have the last mile problem

Libero Badaró Street - 1919

Teodoro Sampaio Street - 1904

Pompeia Avenue - 1922

23 de Maio Avenue - 1967

Reactive Transportation Hypothesis

abaquara Avenue -

23 de Maio Avenue - 1969

夏日前四 王王前四

Life

ANALY INCOMPOSICIES IN THE OWNER OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNER

A.

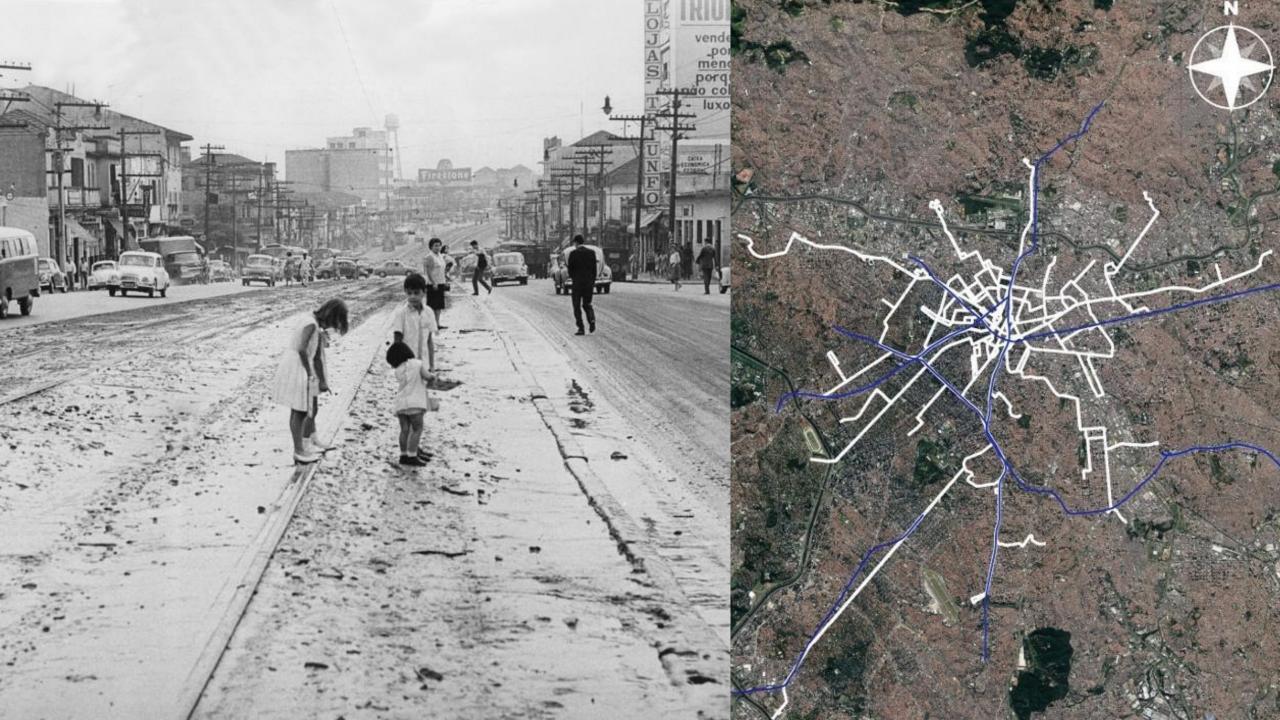
Proactive (Leading) Transportation Hypothesis

Pinheiros River - 1950

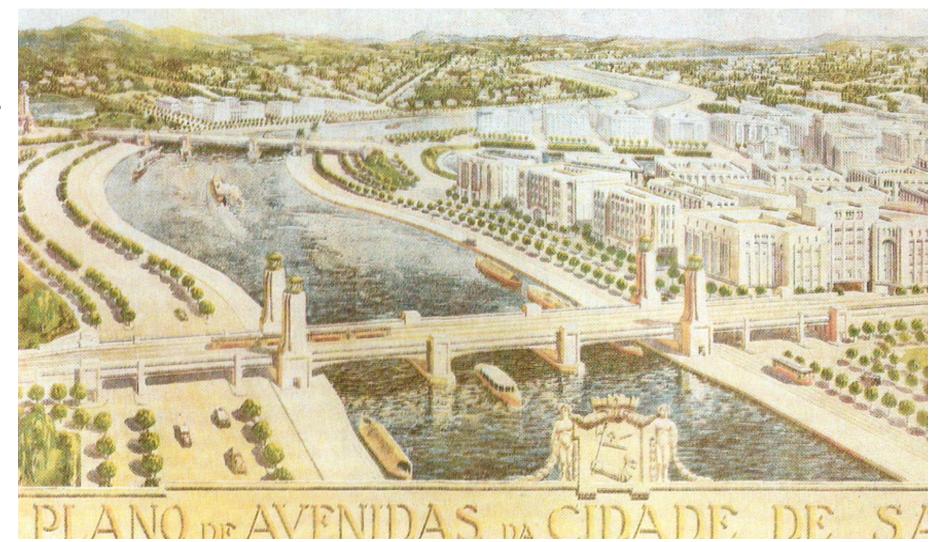
Teodoro Sampaio Street - 1904

"Orderliness" Hypothesis (Levinson, 2008)

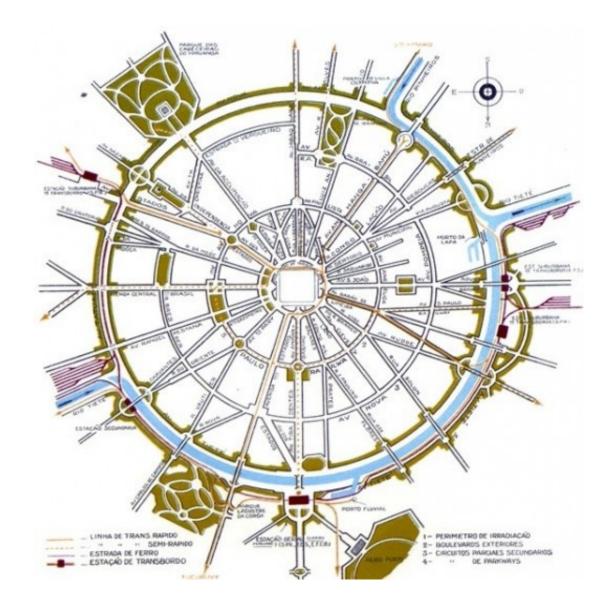
Rebouças Avenue - 1935

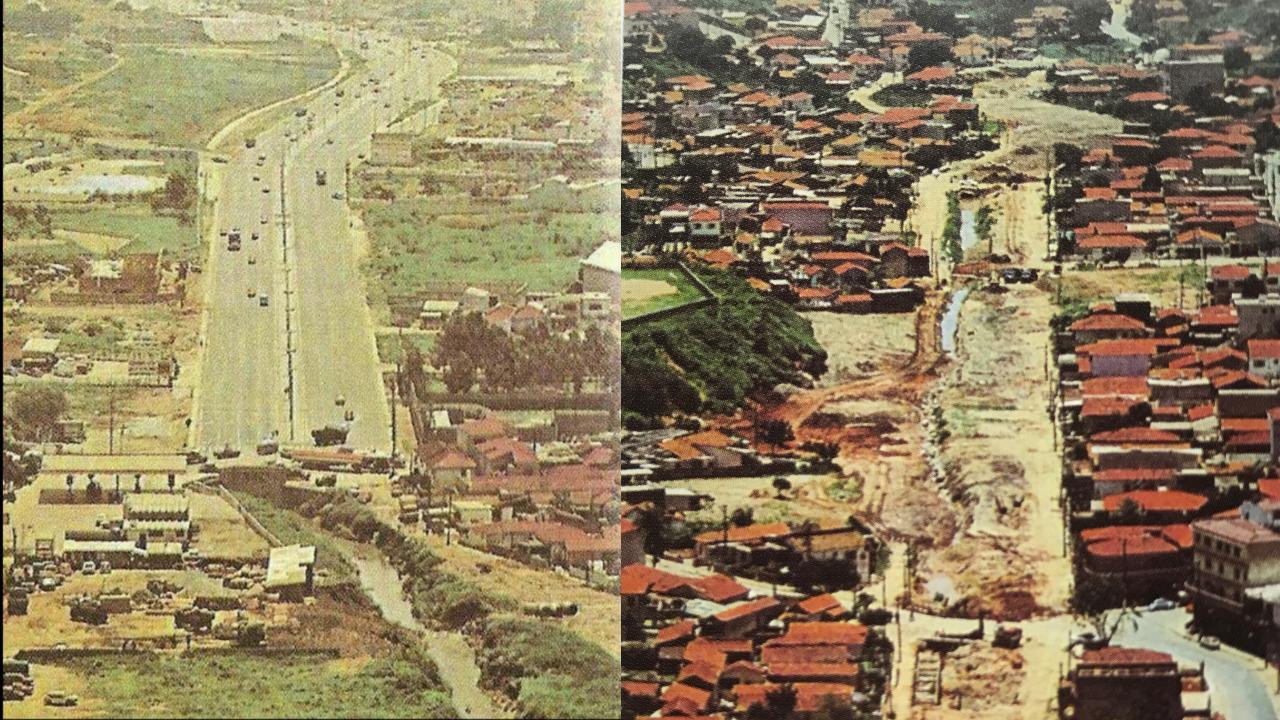

de Julho Avenue - 1938

		São Pau	ulo City	Other cities of the Metropolitan Region of São Paulo			
	Year	Total Population	10 years Increase	Total Population	10 years Increase		
	1872	31,385	-	-	-		
	1890 64,934		59.39%	-	-		
ley	1900	239,820	269.33%	-	-		
Electric Trolley	I 920 579,033	70.72%	-	-			
tric	1940	1,326,261	64.52%	241,784	-		
Eleo	1950	2,198,096	65.74%	424,690	75.65%		
	1960	3,781,446	72.03%	957,960	125.57%		
	1970	5,924,615	56.68%	2,215,115	131.23%		
	1980	8,493,217	43.35%	4,095,508	84.89%		
	1990	9,646,185	13.58%	5,798,756	41.59%		
	2000	10,434,252	8.17%	7,444,451	28.38%		
	2010	11,253,503	7.85%	8,430,472	13.25%		


Busses

Subway

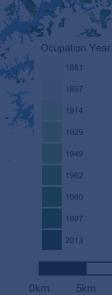

BRT



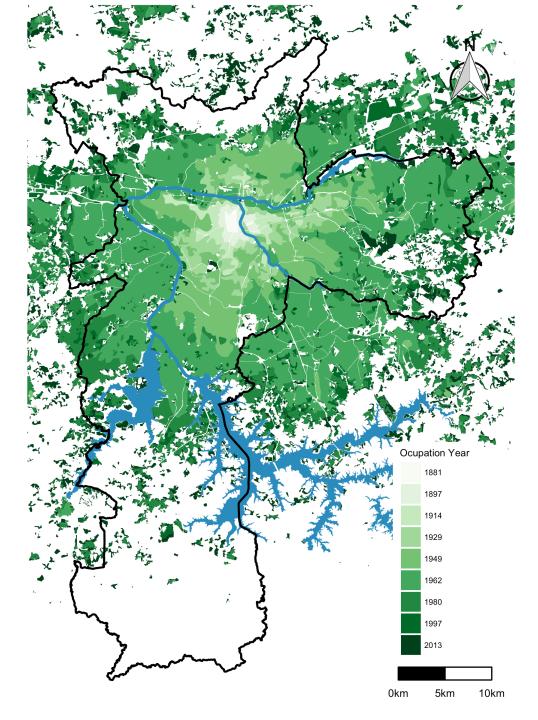
AVENUES AND ARTHERIAL ROADS DEVELOPMENT IN SÃO PAULO

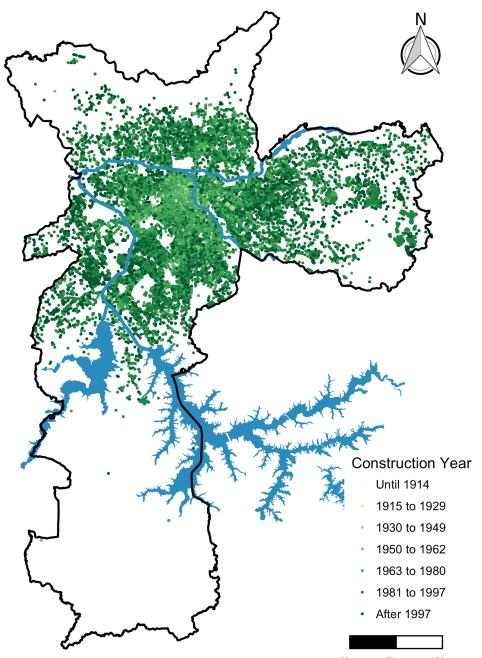
AVENUES AND ARTHERIAL ROADS DEVELOPMENT IN SÃO PAULO

THE VALIDITY OF OUR IDENTIFICATION STRATEGY


Source of exogenous variation in the transportation variables of interest

- several avenues in the city of São Paulo were built taking advantage of the free course left by rivers
- the subway lines built after the 1960s used the paths of old abandoned streetcar lines
- no clear reason to suppose that the presence of rivers or abandoned tramways in a region would directly influence its urban development


URBAN DEVELOPMENT DATA


Horizontal

Urban footprint in selected years

Vertical Number of high buildings Construction date of existing buildings (> three floors) From São Paulo`s land use tax database

VARIABLES

Urban Development

- Urban area coverage in each period: $UA_{i,t} = U_{i,t}/A_i$
 - where U_{i,t} is the urban area in the unit i at the time t and A_i is the area of the unit i
- Number of Buildings: NB_{i,t}
 - where $B_{i,t}$ is the number of buildings
- **Transportation Development**
- Road (highways and avenues) network length in each period: Rnt_{i,t}
 Transit network length in each period. Test
- Transit network length in each period: $Tnt_{i,t}$

First-stage Regression | Rivers on Avenues

	Dependent variable:							
		VarAvenues_t						
	(1)	(2)	(3)					
Rivers_t	0.380***	0.378***	0.359***					
	(0.126)	(0.127)	(0.120)					
VarNBuildings_t		-0.00005	-0.001**					
0 -		(0.0003)	(0.001)					
Dist CBD			-0.250***					
-			(0.062)					
Zoning Limits			-0.738					
0			(1.059)					
Natural Restrictions			0.109					
			(9.350)					
Constant	4.154***	4.172***	7.118***					
	(0.257)	(0.282)	(0.773)					
Observations	161	161	161					
R ²	0.053	0.053	0.154					
Adjusted R ²	0.047	0.041	0.127					
Residual Std. Error	2.669 (df = 159)	2.677 (df = 158)	2.555 (df = 155)					
F Statistic	8.939 ^{***} (df = 1;	4.450^{**} (df = 2;	5.660^{***} (df = 5;					
r statistic	159)	158)	155)					
Note:	*n-	<0.1; **p<0.05; ***p<0	.01					

The same first stage regression using changes in the transit network instead of avenues reports not significant coefficients

A regression of the change in avenues network length in each cell between 1929 and 1997 on the change in the urbanized area yields a highly positive coefficient of 0.043 (se 0.008).

A regression of the length of river courses in a cell as the independent variable on the change in the urbanized area yields a coefficient that is not significantly different from 0 of -0.010 (se 0.014).

So, investment in urban roads is a good predictor of urban expansion in São Paulo, and rivers are unrelated to changes in the urbanized area.

First-stage Regression | Trolleys on Transit

		Dependent variable:	
		VarTransit_t	
	(1)	(2)	(3)
TrolleyLines_t	0.054***	0.040**	0.045***
ý <u>–</u>	(0.009)	(0.016)	(0.017)
VarNBuildings_t		0.0002	0.0001
····· ··· ····························		(0.0003)	(0.0003)
Dist CBD			-0.020
			(0.023)
Zoning Limits			-0.142
g			(0.267)
Natural Restrictions			-1.534**
			(0.701)
Constant	0.385***	0.355***	0.611**
Constant	(0.071)	(0.078)	(0.292)
Observations	161	161	161
\mathbb{R}^2	0.207	0.209	0.217
Adjusted R ²	0.202	0.199	0.191
Residual Std. Error	0.907 (df = 159)	0.908 (df = 158)	0.912 (df = 155)
F Statistic	41.402 ^{***} (df = 1; 159)	20.921 ^{***} (df = 2; 158)	8.568 ^{***} (df = 5; 155)
	139)	130)	133)
Note:	*p	<0.1; **p<0.05; ***p<0.	01

The same first stage regression using changes in avenues network instead of transit reports not significant coefficients.

		Depender				
		VarTotalU	rbanRate_t			
	(1A)	(2A)	(3A)	(4A)		
VarAvenues_t	0.03	0.1	0.2***	0.1**		
	(0.04)	(0.04)	(0.04)	(0.05)		
VarNBuildings_t		-0.000***	-0.000***	-0.000		
		(0.000)	(0.000)	(0.000)		
DistCBD			-0.03*	-0.1***		
			(0.02)	(0.02)		
ZoningLimitsPercArea			-0.6***			
			(0.2)			
NaturalRestrPercArea			-0.1			
			(0.3)			
TotalUrbanRate_t0				-1.4***		
				(0.2)		
Constant	0.8***	1.0***	1.4***	2.0^{***}		
	(0.2)	(0.2)	(0.4)	(0.4)		
Observations	161	161	161	161		
\mathbb{R}^2	-0.3	-0.5	-0.4	-0.3		
Adjusted R ²	-0.3	-0.5	-0.4	-0.4		
Residual Std. Error	0.3	0.4	0.4	0.4	Weak instruments	0.002736 ***
					Wu-Hausman	0.000558 ***
Note:		*p<0.1; **p<0	0.05; ****p<0.01			

2SLS regression of avenues on urban rate with river courses as instrumental variable

Pass

Pass

		Dependen	nt variable:			
		VarNBu	uildings_t			
	(1B)	(2B)	(3B)	(4B)		
VarTransit_t	1,075.5***	1,236.3***	1,359.5***	719.0**		
	(148.9)	(182.3)	(293.5)	(347.1)		
VarTotalUrbanRate_t		667.3*	947.4	308.3		
		(367.6)	(607.1)	(343.6)		
DistCBD			4.1	-14.0		
			(30.3)	(21.0)		
ZoningLimitsPercArea			720.8			
			(602.8)			
NaturalRestrPercArea			2,418.1**			
			(961.9)			
NBuildings_t0				44.4^{*}		
				(26.4)		
Constant	-288.2***	-786.4**	-1,169.3	-188.9		
	(98.3)	(336.1)	(840.1)	(565.9)		
Observations	161	161	161	161		
\mathbb{R}^2	-2.3	-3.2	-3.9	-0.5		
Adjusted R ²	-2.3	-3.2	-4.1	-0.5		
Residual Std. Error	987.4	1,117.2	1,227.8	670.1	Weak instruments	0.00000139 ***
					Wu-Hausman	<2e-16 ***
Note:		*p<0.1; **p<0	0.05; ***p<0.01			

Pass

Pass

2SLS regression of transit on number of buildings with streetcar routes as instrumental variable

		Dependen	t variable:			Dependen	t variable:			
		VarTotalUrbanRate_t				VarNBuildings_t				
	(1A)	(2A)	(3A)	(4B)	(1B)	(2B)	(3B)	(4B)		
VarAvenues_t	0.039***	0.041***	0.057***	0.0491**	-74.1	-39.9	-27.2	-41.6		
	(0.0118)	(0.0117)	(0.0110)	(0.0176)	(106.4)	(110.1)	(120.1)	(58.8)		
VarTransit_t	-0.2564***	-0.2427	-0.1035	-0.3267	1,047.7***	1,261.1***	1,351.2***	665.7**		
	(0.0618)	(0.1957)	(0.2369)	(0.2055)	(156.3)	(204.9)	(291.2)	(323.9)		
VarNBuildings_t		-0.00001	-0.0003	-0.0003		832.4	1,044.1	417.1		
		(0.0002)	(0.0002)	(0.0002)		(582.4)	(696.0)	(337.5)		
DistCBD			-0.0268*	-0.0401**			-1.5	-23.9		
			(0.0153)	(0.0202)			(37.6)	(23.8)		
ZoningLimitsPercArea			-0.5803***				747.0			
			(0.1797)				(572.1)			
NaturalRestrPercArea			-0.2473				2,421.5***			
			(0.4949)				(938.3)			
NBuildings_t0				0.0265				47.2**		
				(0.0177)				(24.0)		
Constant	0.9556***	0.9568***	1.3898***	1.4925***	89.1	-706.3*	-1,039.4	71.7		
	(0.2461)	(0.2405)	(0.3827)	(0.4953)	(537.8)	(400.2)	(1,028.4)	(642.7)		
Observations	161	161	161	161	161	161	161	161		
\mathbb{R}^2	-0.6882	-0.6519	-0.3230	-0.9772	-2.0	-3.2	-3.7	-0.2		
Adjusted R ²	-0.7096	-0.6834	-0.3745	-1.0409	-2.1	-3.2	-3.9	-0.2		
Residual Std. Error	0.3994	0.3963	0.3581	0.4364	952.0	1,119.8	1,207.4	606.1		
Note:		*p<0.1; **p<0	.05; ***p<0.01							

2SLS regression of avenues and transit on urban rate and number of buildings with river courses and streetcar routes as instrumental variable

		Dependen	nt variable:			Dependen	t variable:		
		VarResBuil	tAreaRate_t		VarComBuiltAreaRate_t				
	(1A)	(2A)	$(3\overline{A})$	(4A)	(1B)	(2B)	(3B)	(4B)	
VarAvenues_t	-34,471.1	-26,050.7	-22,733.1	-25,938.1	-1,682.8	6,196.1	10,738.1	7,937.7	
	(29,001.1)	(26,725.7)	(19,621.3)	(19,783.6)	(30,142.3)	(30,889.3)	(40,224.1)	(57,496.3)	
VarTransit t	211,670.9***	264,283.8***	161,500.4***	160,023.6**	308,702.7***	357,931.8***	456,856.4***	665,262.4	
_	(40,372.8)	(60,193.0)	(61,958.5)	(79,938.8)	(71,066.3)	(78,720.0)	(105,645.8)	(554,164.1)	
VarTotalUrban Rate t		205,224.9	145,884.8	110,387.1		192,025.9	327,269.0	425,919.7	
_		(153,853.2)	(139,276.6)	(118,143.0)		(168,407.8)	(236,628.8)	(539,077.6)	
DistCBD			-24,443.4***	-23,097.3***			12,368.9	24,694.6	
			(7,847.7)	(7,370.8)			(13,112.7)	(30,702.3)	
Zoning Limits			179,507.7*				271,922.8		
6			(99,799.1)				(198,122.2)		
Natural Restrictions			451,445.0**				709,094.0**		
			(183,330.7)				(342,441.1)		
Res/Com Built Area Base Line				-47.7				-50.4	
				(171.2)				(123.2)	
Constant	188,317.8	-7,794.9	285,260.6	336,985.7*	-96,479.4	-279,979.1**	-600,002.7*	-828,592.3	
	(146,180.2)	(108,119.4)	(209,585.3)	(175,701.2)	(158,049.3)	(135,363.4)	(362,245.1)	(860,673.9)	
Observations	161	161	161	161	161	161	161	161	
\mathbb{R}^2	-0.5	-0.7	0.1	0.04	-2.2	-3.2	-5.7	-13.4	
Adjusted R ²	-0.5	-0.7	0.02	0.01	-2.2	-3.3	-6.0	-13.9	
Residual Std. Error	267,742.2	290,218.2	218,061.4	219,631.2	280,582.1	324,449.2	412,166.3	602,829.9	
Note:		*p<0.1; **p<0	0.05; ***p<0.01						

2SLS regression of avenues and transit on residential and commercial built up area with river courses and streetcar routes as instrumental variables

- Each kilometer of new avenues and arterial roads generated a 5% increase in the local urbanization rate between 1929 and 1997.
- Each additional kilometer of rail transit lines was responsible for an increase of 130% in the number of tall buildings in the region.
 - Commercial real estate react more intensely to investments in transit than the residential real estate market
- First joint causal inference of urban roads and transit different impacts on horizontal and vertical urban development.
- Strengthen pro-transit arguments: promote not only sustainable mobility, but also sustainable urbanization.
 - argument based on anecdotal evidence and historical observation, but with little empirical supporting evidence